Newborn Screening and Diagnosis of Fatty Acid Oxidation Disorders

Carla Cuthbert, PhD, FACMG, FCCMG
Chief, Newborn Screening and Molecular Biology Branch
National Center for Environmental Health
Centers for Disease Control and Prevention
Newborn Screening

A Public Health Program

- Aimed at identification of conditions for which early intervention can prevent mortality, morbidity, and disabilities
- Performed by analysis of diagnostic markers in blood spots collected on filter paper at birth
- Largest population-based genetic screening effort in the US: ~4 Million babies screened annually
The Newborn Screening System

• Screening
 – Laboratory analysis of newborn bloodspot

• Follow-up of an abnormal result
 – Rapid location, follow-up and referral of the screen-positive infant

• Diagnosis
 – Clinical and biochemical evaluation to diagnose or rule out the disorder

• Management
 – Rapid planning and implementation of long-term therapy

• Evaluation
 – Assessment of the NBS program: efficiency of follow-up & intervention, benefit to society
Newborn Screening: Short Term Follow-up

Abnormal result obtained from the State Lab

CMS nurse from follow-up team notifies Genetics on-call Physician about the Abnormal Newborn Screen result

Genetics on-call Physician locates patient, makes clinical assessment of patient status – recommends clinic visit

Infant sample collected (Plasma, Urine, Whole Blood) Diagnostic evaluation performed

Positive cases: long-term patient management & ongoing care
Follow-up Diagnostic Testing

• Routine Chemistries
 – Electrolytes, blood gases, anion GAP
 – Blood sugar, ketones, lactate, ammonia

• Biochemical Genetics Testing
 – Plasma acylcarnitine (Green top tube – 0.5 ml min whole blood)
 – Carnitine Status (Red top tube – 0.5 ml min whole blood)
 – Urine organic acids (No preservatives – 3 ml min vol)
 – Plasma amino acids (Green top tube – 0.5 ml min whole blood)

• Other specialized testing
 – Enzyme analysis (eg Fatty acid oxidation Probe Assay)
 – Mutation testing
Use of Tandem Mass Spectrometry for Multianalyte Screening of Dried Blood Specimens from Newborns

Donald H. Chace, Theodore A. Kalas, and Edwin W. Naylor
Tandem Mass Spectrometry

- Identification of unknown compounds
- Quantitation of known analytes using stable isotopes
- Provides structural and chemical information of molecules
- High sensitivity and specificity
- Fast analytical time
- Potential for automation for high throughput tests

(modified from ASMS, 1989)
An Acylcarnitine molecule has the following structure:

\[
\begin{align*}
\text{CH}_3 & \quad \text{R} \quad \text{COO} \\
\text{CH}_3 & \quad \text{+N - CH}_2 - \text{CH - CH}_2 - \text{COO - C}_4\text{H}_9 \\
\text{CH}_3 &
\end{align*}
\]

Members of this family of compounds have varying lengths of their R-Group:

- C3 acylcarnitine ... 3 carbon units
- C8 acylcarnitine ... 8 carbon units
- C16 acylcarnitine ... 16 carbon units

- Specific Acylcarnitines accumulate in fatty acid oxidation disorders (and certain organic acidemias) and form a distinct “pattern”
- Acylcarnitine analysis is very important in: prenatal diagnosis, newborn screening, evaluation of symptomatic patients, and postmortem screening
Collective incidence
1:2-4,000 newborns

Newborn Screening by MS/MS

Disorders of fatty acid oxidation
- 2,4-Dienoyl-CoA reductase deficiency
- Carnitine acylcarnitine translocase deficiency
- Carnitine palmitoyltransferase I deficiency
- Carnitine palmitoyltransferase II deficiency
- Carnitine transport defect
- Electron transfer flavoprotein deficiency
- ETF ubiquinone oxidoreductase deficiency
- Long-chain L-3-OH acyl-CoA dehydrogenase deficiency
- Medium-chain acyl-CoA dehydrogenase deficiency
- Medium-chain L-3-OH acyl-CoA dehydrogenase deficiency
- Medium chain ketoacyl-CoA thiolase deficiency
- Short-chain acyl-CoA dehydrogenase deficiency
- Trifunctional protein deficiency
- Very long-chain acyl-CoA dehydrogenase deficiency

Disorders of amino acid metabolism
- Arginase deficiency
- Argininosuccinate lyase deficiency
- Argininosuccinate synthase deficiency
- Maple syrup urine disease (MSUD)
- Citrin deficiency
- Cystathionine β-synthase deficiency
- Methionine adenosyltransferase deficiency
- Mitochondrial ornithine transport defect (HHH)
- Phenylalanine hydroxylase deficiency (PKU)
- Defects of biotinioin metabolism
- Fumaracetoacetase deficiency
- Tyrosine aminotransferase deficiency

Disorders of organic acid metabolism
- 2-CH3 butyryl-CoA dehydrogenase deficiency
- 2-CH3 3-OH butyryl-CoA dehydrogenase deficiency
- 3-OH 3-CH3 glutaryl-CoA lyase deficiency
- 3-CH3 crotonyl-CoA carboxylase deficiency
- 3-CH3 glutaryl-CoA hydratase deficiency
- Isobutyryl-CoA dehydrogenase deficiency
- Isovaleryl-CoA dehydrogenase deficiency
- Glutaryl-CoA dehydrogenase deficiency
- Malonyl-CoA carboxylase deficiency
- Methylmalonyl-CoA mutase deficiency
- Disorders of cobalamin metabolism
- β-ketothiolase deficiency
- Multiple carboxylase deficiency
- Propionyl-CoA carboxylase deficiency
Normal Acylcarnitine Profile

Free Carnitine

C₂

C₃

C₄

C₈

C₁₂

C₁₆

Internal Standard

VLCAD Acylcarnitine Profile

Free Carnitine

C₁₂

C₁₄:1

C₁₆

C₁₈:1

*
Normal Profile in known VLCAD patient on diet

Patient (on MCT diet)

Free Carnitine
Postmortem Bile (LCHAD)

Postmortem DBS (LCHAD)

NBS DBS (LCHAD)

Precursor (85): 0.85 min (17 scans) from AC 070202P-06
Precursor (85): Expt. 3, 0.67 min (31 scans) from 070902-12 copy

Postmortem Bile (LCHAD)

Postmortem DBS (LCHAD)

NBS DBS (LCHAD)
Fatty Acid Oxidation Probe Assay

- Monolayer of skin fibroblasts / amniocytes
- Growth media removed and replaced with “in vitro probe” media containing palmitic acid and L-carnitine
- Incubated for 72 hours, media is collected and subjected to acylcarnitine analysis
- Adherent cells are harvested - total protein analysis
Enzyme Assay for VLCAD - Results

Control Amniocytes vs VLCAD Patient Amniocytes

<table>
<thead>
<tr>
<th>Activity</th>
<th>Control Amniocytes</th>
<th>VLCAD Patient Amniocytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCAD Activity (mU/mg Protein)</td>
<td>1.01</td>
<td>1.21</td>
</tr>
<tr>
<td>VLCAD Activity (mU/mg Protein)</td>
<td>1.52</td>
<td>Not detected</td>
</tr>
</tbody>
</table>

Control Fibroblasts vs VLCAD Patient Fibroblasts

<table>
<thead>
<tr>
<th>Activity</th>
<th>Control Fibroblasts</th>
<th>VLCAD Patient Fibroblasts</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCAD Activity (mU/mg Protein)</td>
<td>1.31</td>
<td>1.07</td>
</tr>
<tr>
<td>VLCAD Activity (mU/mg Protein)</td>
<td>3.61</td>
<td>Not detected</td>
</tr>
</tbody>
</table>
Urine Organic Acids

• Organic Acids – What are they?
 – Water-soluble compounds containing one or more carboxylic group as well as other functional groups (-keto, -hydroxy)
 – Intermediate metabolites of all major groups of organic cellular components: amino acids, lipids, carbohydrates, nucleic acids and steroids

• Accumulation of metabolites which are not present under physiological conditions
Urine Organic Acids

• Urine Sample Collection
 – Urine should be collected without preservatives
 – Collection should avoid fecal contamination
 – Frozen immediately

• Sample Preparation and Analysis
 – Liquid-liquid extraction of acidified urine into organic solvent
 – Evaporation of solvent and derivatization of residue
 – Gas chromatography – Mass spectrometry analysis

• Specific diseases have characteristic organic acid elevations
Organic Acid Analysis

Propionic Acidemia

3-OH propionic acid
3-OH isovaleric acid
propionylglycine
methylcitric acid
IS

Time (min)
Plasma Amino Acids

- **Plasma Sample Collection**
 - Timely centrifugation and separation of plasma specimens is critical to prevent artifacts
 - Must be refrigerated for the short term (< 4 hrs.) or frozen (-20°C) to arrest amino acid deterioration
 - Hemolyzed samples are not viable

- **Sample Preparation and Analysis**
 - Protein precipitation and centrifugation
 - Ion exchange chromatography to separate
 - Post-column derivatization & detection at 440 to 570 nm

- **Specific diseases have characteristic amino acid elevations**
Plasma Amino Acids Analysis

Tyrosinemia

* Internal Standards

Time (min)